Journal of Organometallic Chemistry, 170 (1979) 319–336 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

PERFLUOROMETHYL-ELEMENT-LIGANDEN

XX *. BILDUNG VON HETERONUCLEAREN ZWEIKERNKOMPLEXEN DES TYPS $MM'(CO)_n XY$ (M = Mn; M' = Re, Co)

G. BEYSEL, J. GROBE * und W. MOHR

Eduard Zintl-Institut der Technischen Hochschule Darmstadt, Hochschulstrasse 4, D-6100 Darmstadt (B.R.D.)

(Eingegangen den 16. November 1978)

Summary

The reactions of MnRe(CO)₁₀ with As₂(CF₃)₄ and MnCo(CO)₉ with P₂(CF₃)₄, As₂(CF₃)₄, S₂(CF₃)₂, Se₂(CF₃)₂, (CF₃)₂EI (E = P, As), (CF₃)₂AsH, (CF₃)₂AsE'CF₃ (E' = S, Se), (CF₃)₂PSeCF₃, Me₂AsI and (CF₃)₂PPMe₂, respectively, have been studied under various conditions. Besides already known mono- and binuclear compounds the heteronuclear complexes MnRe(CO)₈[As(CF₃)₂]₂ and MnCo-(CO)₇[E(CF₃)₂]₂ (E = P, As) are formed. The reactions proceed via cleavage of the M-M' bond and formation of the mononuclear species Mn(CO)₅X and M'(CO)_nY (M' = Re, n = 5; M' = Co, n = 4).

Zusammenfassung

Die Umsetzungen von MnRe(CO)₁₀ mit As₂(CF₃)₄ und MnCo(CO)₉ mit P₂(CF₃)₄, As₂(CF₃)₄, S₂(CF₃)₂, Se₂(CF₃)₂, (CF₃)₂EI (E = P, As), (CF₃)₂AsH, (CF₃)₂AsE'CF₃ (E' = S, Se), (CF₃)₂PSeCF₃, Me₂AsI bzw. (CF₃)₂PPMe₂ werden unter verschiedenen Bedingungen untersucht. Neben schon bekannten Ein- und Zweikernverbindungen lassen sich die heteronuclearen Komplexe MnRe(CO)₈-[As(CF₃)₂]₂ und MnCo(CO)₇[E(CF₃)₂]₂ (E = P, As) darstellen. Bei den Reaktionen werden unter Spaltung der M-M'-Bindung generell die einkernigen Zwischenstufen Mn(CO)₅X und M'(CO)_nY (M' = Re, n = 5; M' = Co, n = 4) durchlaufen.

Einleitung

Die Umsetzungen von $Mn_2(CO)_{10}$ [2] bzw. $Re_2(CO)_{10}$ [3] mit "Pseudohalogenen" des Typs XY = $(CF_3)_2EZ$ (E = P, As; Z = Hal, SCF₃, SeCF₃, E(CF₃)₂)

^{*} XIX. Mitteilung s. Lit. 1.

führen, wie wir in früheren Mitteilungen zeigen konnten, in hoher Ausbeute zu gemischt verbrückten Zweikernkomplexen der Zusammensetzung M₂(CO)₈XY (M = Mn, Re). Für das Studium der Bindungsverhältnisse im M₂XY-Vierring als Funktion der Variablen M, X und Y war unter anderem die Synthese von. heteronuclearen Systemen des Typs $MM'(CO)_n XY (M \neq M')$ von Interesse. Solche Verbindungen mit Brückensystemen aus vier verschiedenen Ringgliedern wurden bisher nur bei der Umsetzung von Einkernkomplexen $M(CO)_{5}X$ mit M'(CO)₅Y [4] erhalten. Allerdings führt dieses Verfahren in der Regel zu einem Gemisch, das ausser der gewünschten Verbindung auch die beiden symmetrischen Kombinationen $M_2(CO)_8X_2$ und $M'_2(CO)_8Y_2$ enthält. Noch komplizierter wird das Produktgemisch, wenn bei den zur Reaktion erforderlichen Temperaturen die terminalen Gruppen X und Y partiell gegeneinander ausgetauscht werden. Im Prinzip sind dann neun verschiedene Verbindungen möglich, die aber nicht alle entstehen, weil die Bildung der Zweikernkomplexe nicht für alle Kombinationen gleich günstig ist. Die Reaktion nach Gl. 1 wird im wesentlichen durch zwei Effekte bestimmt: (a) Das relative Donorvermögen der Liganden X und Y, und (b) die relative π -Akzeptorfähigkeit und Elektronegativität von X und Y in den vorliegenden Einkernkomplexen.

$$M(CO)_{5}X + M'(CO)_{5}Y \xrightarrow{-CO} (CO)_{5}M \xrightarrow{X} M'(CO)_{4} \xrightarrow{-CO} (CO)_{4}M \xrightarrow{X} M'(CO)_{4}$$
(1)

Die Gütligkeit dieses aus den bisherigen Untersuchungen folgenden Syntheseprinzips wird zu Zeit systematisch an geeigneten Kombinationen von Einkernkomplexen überprüft.

In der vorliegenden Arbeit berichten wir über Umsetzungen von $MnRe(CO)_{10}$ (mit W. Mohr) bzw. $MnCo(CO)_9$ (mit G. Beysel) mit (CF₃)₂EX-Verbindungen.

Umsetzung von MnRe(CO)₁₀ mit As₂(CF₃)₄

Setzt man für diese Reaktion den gleichen Verlauf wie bei der Umsetzung der homonuclearen $M_2(CO)_{10}$ -Verbindungen (M = Mn, Re) voraus, so ist entweder gemäss Gl. 2 die ausschliessliche Bildung von MnRe(CO)₈[As(CF₃)₂]₂ oder nach den Gl. 3-5 die Bildung eines Gemisches aus drei Produkten Mn₂As₂ *, Re₂As₂ und MnReAs₂ zu erwarten.

$$(CO)_{5}MnRe(CO)_{5} + As_{2}(CF_{3})_{4} \rightarrow MnRe(CO)_{8}[As(CF_{3})_{2}]_{2} + 2CO$$
(2)

$$(CO)_{5}MnAs(CF_{3})_{2} + (CF_{3})_{2}AsRe(CO)_{5} \rightarrow MnRe(CO)_{8}[As(CF_{3})_{2}]_{2} + 2CO \qquad (3)$$

$$2(CF_3)_2 AsMn(CO)_5 \rightarrow Mn_2(CO)_8 [As(CF_3)_2]_2 + 2 CO$$
(4)

$$2(CF_3)_2 AsRe(CO)_5 \rightarrow Re_2(CO)_8 [As(CF_3)_2]_2 + 2CO$$
(5)

Die Untersuchung des bei 160–190°C im Bombenrohr gebildeten Reaktionsproduktes bestätigt das Vorliegen der drei genannten Zweikernkomplexe und

^{*} Abgekürzte Schreibweise für Mn₂(CO)8[As(CF₃)₂]₂; analog Re₂As₂ und MnReAs₂.

damit die schon durch andere Arbeiten [5,6] nachgewiesene zwischenzeitliche Bildung der Einkernverbindungen $(CF_3)_2$ AsMn $(CO)_5$ und $(CF_3)_2$ AsRe $(CO)_5$.

Das bei der Sublimation im Hochvakuum anfallende Kristallgemisch enthält die Komplexe Mn₂As₂, Re₂As₂ und MnReAs₂ im Molverhältnis 1/2/2. Die Auftrennung des Gemisches ist selbst durch fraktionierte Sublimation im Temperaturgefälle nicht möglich. Seine Zusammensetzung und die Identität der Verbindungen werden durch ¹⁹F-NMR, IR und massenspektrometrische Untersuchungen gesichert. Ausser den beiden symmetrischen Komplexen, die durch Vergleich der Spektren mit den Daten authentischer Proben nachgewiesen werden, liegt nach Aussage des Massenspektrums nur die Zweikernverbindung MnReAs₂ vor. Ihre NMR- und IR-Daten stimmen mit dem arithmetischen Mittel der für die beiden symmetrischen Systeme gefundenen Werte gut überein (s. Tab. 3).

Umsetzungen von $MnCo(CO)_9$ mit $(CF_3)_n EX$ -Verbindungen

1. Die Reaktion mit $As_2(CF_3)_4$

In Pentan als Lösungsmittel führt diese Reaktion, wie wir kürzlich zeigen konnten [7], schon bei Raumtemperatur zu $(CF_3)_2AsMn(CO)_5$ und der polymeren Kobaltverbindung $[Co(CO)_3As(CF_3)_2]_n$, deren Bildung über die Zwischenstufe $(CF_3)_2AsCo(CO)_4$ zu formulieren ist. Da sich bei hohem CO-Druck ein Gleichgewicht zwischen dem Feststoff und dem löslichen Einkernkomplex ausbildet, ist bei erhöhter Temperatur mit Folgereaktionen der Verbindungen $(CF_3)_2AsMn(CO)_5$ und $(CF_3)_2AsCo(CO)_4$ zu rechnen. Ausgehend von MnCo(CO)_9 und $As_2(CF_3)_4$ entsteht auch bei 100°C aus der orangeroten Ausgangslösung unter Ausfällung von $[Co(CO)_3As(CF_3)_2]_n$ zunächst die gelbe Lösung der Manganverbindung $(CF_3)_2AsMn(CO)_5$, deren Farbe allerdings im Laufe von vier Tagen nach rotviolett umschlägt. Dabei geht gleichzeitig der grösste Teil des Feststoffes wieder in Lösung. Nach Abziehen des Lösungsmittels und Sublimation wird der Zweikernkomplex MnCo(CO)_7[As(CF_3)_2]_2 in wachsartigen rotvioletten Kristallen erhalten.

Das IR-Spektrum zeigt im CO-Valenzbereich sieben Banden (Fig. 1); im ¹⁹F-NMR-Spektrum ergibt sich ein Singulett bei 49.3 ppm für die beiden As(CF₃)₂-Gruppen und im Massenspektrum wird der Molekülpeak (M 736) und das für Metallcarbonylderivate typische Abbaumuster der sukzessiven Eliminierung von CO beobachtet.

Der Verlauf der Reaktion von $MnCo(CO)_9$ mit $As_2(CF_3)_4$ bei höherer Temperatur lässt sich auf Grund der experimentellen Befunde durch die Gl. 6–8 wiedergeben.

$$(CO)_{5}MnCo(CO)_{4} + As_{2}(CF_{3})_{4} \rightarrow (CO)_{5}MnAs(CF_{3})_{2} + (CF_{3})_{2}AsCo(CO)_{4}$$
(6)

$$n(CF_3)_2AsCo(CO)_4 \neq [Co(CO)_3As(CF_3)_2]_n + nCO$$
(7)

$$(CO)_{5}MnAs(CF_{3})_{2} + (CF_{3})_{2}AsCo(CO)_{4} \rightarrow MnCo(CO)_{7}[As(CF_{3})_{2}]_{2} + 2CO \qquad (8)$$

Die nach Abschluss der Umsetzung ermittelte CO-Menge von 2.25 mmol je mmol MnCo(CO)₉ (erwartet 2.0 mmol) steht mit dieser Beschreibung ebenso in Einklang wie die Ergebnisse einer NMR-spektroskopisch verfolgten Reaktion. Bei der Umsetzung im NMR-Rohr werden zu Beginn nur die Signale der beiden

Fig. 1. IR-Spektrum von MnCo(CO)7[As(CF3)2]2 im CO-Valenzvertich; Lösungsmittel: Cyclohexan.

.

Fig. 2. ¹⁹F-NMR-Spektrum von MnCo(CO)₇[P(CF₃)₂]₂.

Einkernkomplexe (CF₃)₂AsMn(CO)₅ und (CF₃)₂AsCo(CO)₄ beobachtet. Ihre Intensität nimmt im Laufe der Zeit ab, während parallel dazu das Signal der Zweikernverbindung MnCo(CO)₇[As(CF₃)₂]₂ stärker wird.

2. Die Reaktion mit $P_2(CF_3)_4$

Die Umsetzung von MnCo(CO)₉ mit $P_2(CF_3)_4$ in Pentan als Lösungsmittel führt bei 90°C im Bombenrohr innerhalb von 20 Stunden unter Freisetzung von 1.9 mmol CO gemäss Gl. 9 in 90%iger Ausbeute zu dem orangefarbenen Zweikernkomplex MnCo(CO)₇[P(CF₃)₂]₂. Daneben fällt ein gelber unlöslicher Feststoff an, der bisher nicht näher untersucht wurde. Die neue Verbindung zeigt im CO-Valenzbereich des IR-Spektrums das gleiche Bandenmuster wie die analoge Arsen-Verbindung und wird zusätzlich massenspektrometrisch und analytisch charakterisiert.

$$(CO)_{5}MnCo(CO)_{4} + P_{2}(CF_{3})_{4} \rightarrow MnCo(CO)_{7}[P(CF_{3})_{2}]_{2} + 2CO$$
(9)

Komplizierter stellen sich die Verhältnisse im ¹⁹F-NMR-Spektrum dar (Fig. 2). Wie bei der symmetrischen Zweikernverbindung $[Co(CO)_3P(CF_3)_2]_2$ liegt ein Spektrum höherer Ordnung vom Typ $X_6AA'X'_6$ oder $X_3X'_3AA'X''_3X'''_3$ vor, das durch starke Kopplung der beiden P-Atome bedingt ist. Wegen der Breite der Signale ist die Ableitung der Kopplungskonstanten nicht möglich.

3. Die Reaktion mit $S_2(CF_3)_2$ bzw. $Se_2(CF_3)_2$

Die Umsetzungen von MnCo(CO)₉ mit E'₂(CF₃)₂ (E' = S, Se) führen bei Raumtemperatur unter Abscheidung unlöslicher Feststoffe zur Bildung der beiden löslichen Manganverbindungen CF₃E'Mn(CO)₅ und Mn₂(CO)₈(E'CF₃)₂. Im Produktgemisch der Umsetzung mit Se₂(CF₃)₂ zeigen zusätzliche ¹⁹F-Signale weitere lösliche CF₃Se-Verbindungen an. Da sich die stöchiometrisch eingesetzten E'₂(CF₃)₂-Komponenten bei 20°C nicht völlig umsetzen, wird die Temperatur auf 90°C (E' = S; 15 h) bzw. 110°C (E' = Se, 2 h) gesteigert. In den löslichen Anteilen liegen auch danach für E' = S nur die beiden Mangankomplexe CF₃SMn(CO)₅ und Mn₂(CO)₈(SCF₃)₂ vor, für E' = Se tritt ausser den analogen Selenverbindungen eine weitere Komponente auf, die aber bei der Aufarbeitung des Reaktionsgemisches zerfällt. Es ist daher zu vermuten, dass sie nur unter ausreichendem CO-Druck existiert. Bei beiden Umsetzungen kommt es zu unerwünschten Folgereaktionen, die im Fall der Schwefelverbindung vornehmlich die Kobaltkomponente, im Fall der Selenverbindung aber offenbar auch einen Teil der Manganverbindung betreffen. Die unlöslichen, nichtflüchtigen Anteile machen nämlich etwa 50 bzw. 80% der Ausgangsverbindungen aus.

Aus der Bildung der Mangankomplexe $CF_3E'Mn(CO)_5$ ist zu schliessen, dass der erste Reaktionsschritt auch hier in der Spaltung der Mn—Co-Bindung analog zu Gl. 6 besteht. Die Kobaltverbindungen $CF_3E'Co(CO)_4$ sind selbst spektroskopisch nicht nachweisbar, weil sie unter Abspaltung von CO und Bildung von Feststoffen rasch zerfallen. Sie ähneln damit den Halogenverbindungen Co-(CO)₄X (X = Cl, Br) [8]. Die Einkernkomplexe $CF_3E'Mn(CO)_5$ wandeln sich in bekannter Weise [4,9,10] in die Zweikernsysteme $Mn_2(CO)_8(E'CF_3)_2$ ·um.

4. Die Reaktionen mit $(CF_3)_2 EI$ (E = P, As)

Die Verbindungen $(CF_3)_2$ PI und $(CF_3)_2$ AsI zeigen in ihren Reaktionen mit MnCo(CO)₉ ähnliches Verhalten. Schon bei 20°C wird innerhalb von 24 Studen die vollständige Spaltung der Mn—Co-Bindung gemäss Gl. 10 erziehlt. Die dabei im ersten Schritt gebildeten Einkernkomplexe $(CF_3)_2$ ECo(CO)₄ sind nicht stabil und setzen sich in für E = P bzw. As typischen Folgereaktionen zu Co₂(CO)₆- $[P(CF_3)_2]_2$ bzw. $[Co(CO)_3As(CF_3)_2]_n$ um [7,11].

$$MnCo(CO)_9 + (CF_3)_2 EI \rightarrow (CO)_5 MnI + (CF_3)_2 ECo(CO)_4$$
(10)

$$n(\mathrm{CF}_3)_2 \mathrm{ECo}(\mathrm{CO})_4 \to [\mathrm{Co}(\mathrm{CO})_3 \mathrm{E}(\mathrm{CF}_3)_2]_n + n\mathrm{CO}$$
(11)

(E = P, n = 2; E = As, n sehr gross)

Die bei Erhöhung der Temperatur auf 90°C (E = P) bzw. 110°C (E = As) beobachteten Folgereaktionen führen für E = P zur Bildung von $(CF_3)_2$ PI und $Mn_2(CO)_8P(CF_3)_2I$, für E = As zu As₂(CF₃)₄, $(CF_3)_2$ AsI und $Mn_2(CO)_8As(CF_3)_2I$. Der Nachweis des Diarsans ermöglicht eine einfache Erklärung für das Auftreten des Zweikernkomplexes $Mn_2(CO)_8As(CF_3)_2I$ gemäss Gl. 12 [5].

$$2 \operatorname{Mn}(\operatorname{CO})_{5} I + \operatorname{As}_{2}(\operatorname{CF}_{3})_{4} \rightarrow \operatorname{Mn}_{2}(\operatorname{CO})_{8} \operatorname{As}(\operatorname{CF}_{3})_{2} I + (\operatorname{CF}_{3})_{2} \operatorname{AsI} + 2 \operatorname{CO}$$
(12)

Die Bildung von $(CF_3)_2$ PI für E = P kann als Hinweis auf einen analogen Reaktionsverlauf gewertet werden, doch sind die Reaktionsfolgen 13 und 14 als Alternativen nicht ganz auszuschliessen.

$$Mn(CO)_{5}I + (CF_{3})_{2}PCo(CO)_{4} \rightarrow (CF_{3})_{2}PMn(CO)_{5} + "Co(CO)_{4}I"$$
(13)

$$Mn(CO)_{5}I + (CF_{3})_{2}PMn(CO)_{5} \rightarrow Mn_{2}(CO)_{8}P(CF_{3})_{2}I + 2CO$$
(14)

Der Ursprung der für die Folgereaktion 12 erforderlichen $E_2(CF_3)_4$ -Verbindungen kann zur Zeit nur Gegenstand von Vermutungen sein. Im Fall der Arsenverbindungen wird parallel zur Bildung von $As_2(CF_3)_4$ der Vierkernkomplex $Co_4(CO)_{12}$ beobachtet, so dass als Reaktionsweg die Thermolyse nach Gl. 15 in Betracht kommt:

$$[Co(CO)_{3}As(CF_{3})_{2}]_{n} \rightarrow \frac{n}{2}As_{2}(CF_{3})_{4} + \frac{n}{4}Co_{4}(CO)_{12}$$
(15)

Werden die Reaktionsgemische schliesslich mehrere Tage lang auf 110°C (E = P) bzw. 100°C (E = As) erhitzt, so bildet sich in beiden Fällen die heteronucleare Verbindung MnCo(CO)₇[E(CF₃)₂]₂ (E = P, As) in beträchtlicher Ausbeute (50-75%). Für die Entstehung dieser Komplexe ist nach allen vorliegenden Kenntnissen die Rückbildung der Einkernsysteme (CF₃)₂EMn(CO)₅ und (CF₃)₂-ECo(CO)₄ aus den Zweikernkomplexen bzw. den Polymeren unter Einwirkung von CO zu fordern. Dass Folgereaktionen zwischen den Primärprodukten der Umsetzung für die Bildung von Mn₂(CO)₈E(CF₃)₂I und MnCo(CO)₇[E(CF₃)₂]₂ verantwortlich sind, lässt sich durch gesonderte Experimente nachweisen (s. unten!).

Besondere Beachtung verdient die für $MnCo(CO)_{7}[As(CF_{3})_{2}]_{2}$ beobachtete Zerfallsreaktion oberhalb 130°C. Unter Eliminierung von "(CF₃)₂AsCo(CO)₃", das polymer anfällt, entsteht der Zweikernkomplex $Mn_{2}(CO)_{8}[As(CF_{3})_{2}]_{2}$. Ähnliche, unter Abspaltung von "Me₂AsCo(CO)₃" verlaufende Umsetzungen wurden kürzlich von Vahrenkamp [12] nachgewiesen und zu interessanten Synthesen verwendet.

5. Die Reaktion mit $(CF_3)_2AsH$

Die Reaktion von MnCo(CO)₉ mit (CF₃)₂AsH erfolgt erst bei Temperaturen um 80°C und verläuft unter heftiger Gasentwicklung und Abscheidung von $[Co(CO)_2As(CF_3)_2]_n$ ab. Die Deutung des Reaktionsverlaufs muss ausserdem der Bildung von (CF₃)₂AsMn(CO)₅ Rechnung tragen (Gl. 16 und 17).

$$(CO)_{5}MnCo(CO)_{4} + HAs(CF_{3})_{2} \rightarrow (CO)_{5}MnAs(CF_{3})_{2} + HCo(CO)_{4}$$
(16)

$$HCo(CO)_4 + HAs(CF_3)_2 \rightarrow "(CF_3)_2 AsCo(CO)_4" + H_2$$
(17)

Bei Temperaturerhöhung auf etwa 100°C setzt erwartungsgemäss die zuvor beschriebene Weiterreaktion zum gemischten Zweikernkomplex $MnCo(CO)_{7}$ - $[As(CF_3)_2]_2$ ein, die sich unter partieller Auflösung des Feststoffes vollzieht.

6. Die Reaktionen mit $(CF_3)_2$ AsE'CF₃ (E' = S, Se)

Für die beiden Umsetzungen von $MnCo(CO)_9$ mit $(CF_3)_2AsSCF_3$ bzw. $(CF_3)_2$ -AsSeCF₃ ergeben sich graduelle Unterschiede im Ablauf, die zum einen der höheren Bindungsenergie der As—S-Bindung, zum anderen der grösseren Stabilität der CF₃Se-Kobaltverbindung zugeschrieben werden können. Während die As—S-Verbindung erst oberhalb 75°C reagiert, wird für $(CF_3)_2AsSeCF_3$ schon bei Raumtemperatur die Spaltung der Mn—Co-Bindung beobachtet. Als Produkte der bei 110°C zu Ende geführten Umsetzung mit $(CF_3)_2AsSCF_3$ werden neben einem grauschwarzen, nicht näher charakterisierten Feststoff die Komplexe $Mn(CO)_5As(CF_3)_2$, $Mn_2(CO)_8(SCF_3)_2$ und $Mn_2(CO)_8As(CF_3)_2SCF_3$ durch Vergleich mit den Spektren authentischer Proben zweifelsfrei identifiziert. Die unter milderen Bedingungen ablaufende Reaktion mit $(CF_3)_2AsSeCF_3$ liefert gemäss Gl. 18 und 19 alle einkernigen Zwischenstufen, ein Befund, der für eine unspezifische Spaltung der Mn-Co- wie der As-Se-Bindung spricht.

$$(CO)_{5}MnCo(CO)_{4} + (CF_{3})_{2}AsSeCF_{3} \rightarrow (CO)_{5}MnAs(CF_{3})_{2} + "CF_{3}SeCo(CO)_{4}"$$
(18)

$$(CO)_{5}MnCo(CO)_{4} + (CF_{3})_{2}AsSeCF_{3} \rightarrow (CO)_{5}MnSeCF_{3} + (CF_{3})_{2}AsCo(CO)_{4}$$
(19)

Ausser der CoSe-Komponente sind alle Zwischenstufen im ¹⁹F-NMR-Spektrum nachweisbar. Bei Erhöhung der Temperatur auf 75°C schliessen sich als Folgereaktionen die Kombination von $(CF_3)_2AsMn(CO)_5$ mit $CF_3SeMn(CO)_5$ zu $Mn_2(CO)_6$ - $As(CF_3)_2SeCF_3$, die Kondensation von $CF_3SeMn(CO)_5$ zu $Mn_2(CO)_6(SeCF_3)_2$ und die Bildung des polymeren $[Co(CO)_3As(CF_3)_2]_n$ an. Das heteronucleare Zweikernsystem $MnCo(CO)_7[As(CF_3)_2]_2$ wird unter diesen Bedingungen nicht beobachtet.

7. Die Reaktion mit $(CF_3)_2PSeCF_3$

Bei dieser Reaktion ist die Spaltungsrichtung gemäss Gl. 20 bevorzugt; sie läuft schon bei Raumtemperatur unter Bildung von $CF_3SeMn(CO)_5$, $Mn_2(CO)_8(SeCF_3)_2$, $[Co(CO)_3P(CF_3)_2]_2$ und $MnCo(CO)_7P(CF_3)_2SeCF_3$ ab und ist nach 24 Studen bei 75°C vollständig. An den ersten Reaktionsschritt schliessen sich hier also mehrere Kondensationensreaktionen von vergleichbarer Geschwindigkeit an.

$$(CO)_{5}MnCo(CO)_{4} + (CF_{3})_{2}PSeCF_{3} \rightarrow (CO)_{5}MnSeCF_{3} + "(CF_{3})_{2}PCo(CO)_{4}" (20)$$

Die Auftrennung der physikalisch und chemisch sehr ähnlichen Zweikernkomplexe gelingt auch durch fraktionierte Sublimation in Temperaturgefälle nicht. Da nur die heteronucleare Verbindung MnCo(CO)₇P(CF₃)₂SeCF₃ bisher nicht auf anderem Wege zugänglich ist, erfolgte ihre Charakterisierung im Gemisch durch Vergleich der Spektren mit denen authentischer Proben der bekannten Gemischkomponenten. Im MnCo(CO)₇P(CF₃)₂SeCF₃ liegt ähnlich wie in den homonuclearen Systemen M₂(CO)₈ER₂E'R' (M = Mn, Re; E = P, As; E' = S, Se; R, R' = CH₃, CF₃) ein fluktuierendes System vor (Inversion am E'-Atom).

Umsetzung von MnCo(CO)₉ mit Me_2EX -Verbindungen (Me = CH₃)

Diese Umsetzungen wurden mit in die Untersuchungen einbezogen, um festzustellen, inwieweit methylsubstituierte Donorgruppen in Konkurrenz zur Spaltung der Mn—Co-Bindung zu CO-Substitutionsreaktionen führen.

1. Die Reaktion mit Me₂AsI

Diese Reaktion knüpft an die Umsetzung von $Mn_2(CO)_{10}$ mit Me₂AsI [13] an, die in guter Ausbeute den Zweikernkomplex $Mn_2(CO)_8AsMe_2I$ mit Me₂As und I als Brückenliganden liefert. Wie bei den vorstehend beschriebenen Umsetzungen war auch hier die Synthese von Brückensystemen mit vier verschiedenen Ringgliedern beabsichtigt. MnCo(CO)₉ und Me₂AsI reagieren schon bei 20°C in wenigen Tagen unter völlständigem Verbrauch von Me₂AsI miteinander. Neben dem roten Feststoff $[Co(CO)_3AsMe_2]_n$ fallen zwei lösliche, Me₂As-haltige Verbindungen an. Die Aufarbeitung des Produktgemisches durch Sublimation liefert neben wenig Mn(CO)₅I den Komplex *cis*-Mn(CO)₄(I)AsMe₂I, der aus $Mn(CO)_5I$ durch Ersatz von CO durch den basischen Liganden Me₂AsI entsteht. Bei der zweiten löslichen Kompomente handelt es sich um den roten, öligen, erstmals von Hayter [14] beschriebenen Zweikernkomplex [Co(CO)₃AsMe₂]₂, dessen Isolierung auch hier nicht gelingt. Auf der Basis der experimentellen Befunde ist der Verlauf der Reaktion von MnCo(CO)₉ mit Me₂AsI wie folgt zu beschreiben:

Im ersten Schritt erfolgt die Spaltung der Mn—Co-Bindung unter Bildung von Mn(CO)₅I und "Me₂AsCo(CO)₄". Die AsCo-Verbindung geht in geringem Umfang in die Zweikernverbindung, hauptsächlich jedoch in das Polymere [Co(CO)₃AsMe₂]_n über. Mn(CO)₅I reagiert mit Me₂AsI zu *cis*-Mn(CO)₄(I)AsMe₂I.

2. Die Reaktion mit $Me_2PP(CF_3)_2$

Die Umsetzung von $MnCo(CO)_9$ mit $Me_2PP(CF_3)_2$ wird durch die hohe Basizität der Me_2P -Gruppe und die grosse Stabilität der P-P-Bindung bestimmt. Bevorzugte Reaktion ist daher die Substitution eines CO-Liganden nach Gl. 21.

 $(CO)_5MnCo(CO)_4 + Me_2PP(CF_3)_2 \rightarrow (CO)_5MnCo(CO)_3PMe_2P(CF_3)_2 + CO$ (21)

Die Reaktion wird durch ¹H- und ¹⁹F-NMR-Messungen verfolgt und ist nach ca. 50 Studen bei 20°C abgeschlossen. Die NMR-Daten beweisen die erwartete Koordination des Diphosphans über die Me_2P -Donorgruppe.

Umsetzung von $Mn(CO)_5I$ mit $[Co(CO)_3E(CF_3)_2]_n$ (E = P, n = 2; E = As, n =gross)

Diese Reaktionen werden zur Überprüfung der bei den Umsetzungen von $MnCo(CO)_9$ mit $(CF_3)_2EI$ (E = P, As) diskutierten Folgereaktionen 12–15 durchgeführt. Erwartungsgemäss reagieren die Komponenten bei Raumtemperatur nicht miteinander. Oberhalb 90°C (E = P) bzw. 110°C (E = As) kommt es allerdings langsam zur Bildung von $Mn_2(CO)_8P(CF_3)_2I$ und $MnCo(CO)_7[P-(CF_3)_2]_2$ bzw. von $As_2(CF_3)_4$, $Mn_2(CO)_8As(CF_3)_2I$ und $MnCo(CO)_7[As(CF_3)_2]_2$. Damit ist bewiesen, dass die Primärprodukte $Mn(CO)_5I$ und $[Co(CO)_3E(CF_3)_2]_n$ der Umsetzungen von $MnCo(CO)_9$ mit $(CF_3)_2EI$ für die beobachteten Folgereaktionen verantwortlich sind.

Spektroskopische Untersuchungen

Spektroskopische Methoden (IR, NMR, MS) wurden routinemässig bei allen geschilderten Untersuchungen eingesetzt, um den Reaktionsablauf zu kontrollieren und die Reaktionsprodukte zu identifizieren. Die Daten eines Teils der Produkte waren aus früheren Untersuchungen bekannt, so dass die Reaktionskontrolle und Produktcharakterisierung allein auf spektroskopischem Weg erfolgen konnten.

Die Ergebnisse der IR- und NMR-spektrometrischen Untersuchung der Einund Zweikernkomplexe sind in Tab. 1 und 2 zusammengefasst und werden im folgenden Abschnitt diskutiert. Die Massenspektren dienten in erster Linie der Bestimmung der Molekülgrösse und der Charakterisierung von Substanzgemischen. In allen Fällen wird der für Metallcarbonylkomplexe typische stufenweise Abbau von CO beobachtet.

komplex	n(CO) (cm	¹⁻¹ م			ν(CF ₃) (cπ	(1-1)			նիբ (ppm) ^b
CF ₃) ₂ PMn(CO) ₅	2130m	2075w	2045ss	2023s	1165ss	1116s	10785		44.0 (57.4) ^c
CF ₃) ₂ AsMu(CO) ₅	2125m	2070w	2040ss	2021s	1152ss	1121m	1097m	1082s	40.2
CF ₃ SMn(CO)₅	2135m		$\left\{ {\begin{array}{*{20}c} 2052 { m s} \\ 2048 { m s} \end{array} ight.$	2010s	1128s	1122(sh)	10865	1080(sh)	26.8
⊃F3SeMn(CO)5	2130m		2043ss	2010s	11265	10995	1084ss	10655	23.0
CF3)2AsCo(CO)4	2120s	2060s	2045ss	2038ss	1158 s	1132m	1094ss		45,5

TABELLE 1

höherem Feld.^c ²J(PF).

327

2040e					
20103	2034ss	2018s	51.2	53.3	17
2034s	2029ss	2004s	54.5/33.6	с	17
2031ss	2023ss	1997s	46.5		17
2033s	2028ss	2011s	46.2		18
2038s	2032ss	2003s	46.0/35.2		17
2026s	2036ss	1996ss	34.1		19
2020s	2028s 2034m	1991ss	29.5		19
2034ss	2015s	2009s	47.9		
2084ss 2022s	2043m 2011s	2036s	49.3		
2091ss 2027s	2053m 2017s	2042s	55.5	c	
			54.9/33.6	53.6	
2090ss	2060s	2056s 2015w }	58.2	c	11
2091 w 1947 w	2014ss	2006s	47.2	65.5/9.5 ^d	
	2040s 2034s 2031ss 2033s 2026s 2020s 2034ss 2022s 2091ss 2091ss 2090ss	2040s 2034ss 2034s 2029ss 2031ss 2023ss 2033s 2028ss 2038s 2032ss 2026s 2036ss 2020s 2028s 2034ss 2015s 2034ss 2011s 2091ss 2053m 2090ss 2060s 2091w 2014ss	2040s 2034ss 2018s 2034s 2029ss 2004s 2031ss 2023ss 1997s 2033s 2028ss 2011s 2038s 2032ss 2003s 2026s 2036ss 1996ss 2020s 2028s 1991ss 2034ss 2015s 2009s 2034ss 2015s 2009s 2034ss 2043m 2036s 2022s 2011s 2036s 2027s 2017s 2042s 2090ss 206os 2056s 2091w 2014ss 2006s 1947w 2014ss 2006s	$\begin{array}{c ccccc} 2040s & 2034ss & 2018s & 51.2 \\ 2034s & 2029ss & 2004s & 54.5/33.6 \\ 2031ss & 2023ss & 1997s & 46.5 \\ 2033s & 2028ss & 2011s & 46.2 \\ 2038s & 2032ss & 2003s & 46.0/35.2 \\ 2026s & 2036ss & 1996ss & 34.1 \\ 2020s & 2028s & \\ 2034m & 2034m & 20.5 \\ 2034ss & 2015s & 2009s & 47.9 \\ 2084ss & 2043m & 2036s & 49.3 \\ 2022s & 2011s & \\ 2091ss & 2053m & \\ 2027s & 2017s & & 54.9/33.6 \\ 2090ss & 2060s & 2056s \\ 2015w & & 58.2 \\ 2091w & 2014ss & 2006s & 47.2 \\ 1947w & & & & \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

IR- UND ¹⁹F-NMR-DATEN DER ZWEIKERNKOMPLEXE AUS DEN UMSETZUNGEN VON MnRe(CO)₁₀ BZW. MnCo(CO)₉ MIT (CF₃)_nEX

^a Lösungsmittel Cyclohexan; Intensitäten: m = mittelstark, s = stark, ss = sehr stark, w = schwach. ^b $\psi_{\rm F}$ relativ zu CCl₃F; positive Werte zu höherem Feld. ^c Komplizierte Spektren wegen Fluktuation oder Spinsystem höherer Ordnung. ^d ²J(PF) und ³J(PF).

Diskussion der Ergebnisse

In Anlehnung an das bei $Mn_2(CO)_{10}$ [2] und $Re_2(CO)_{10}$ [3] bewährte Verfahren der Umsetzung mit $(CF_3)_n EX$ -Verbindungen werden in der vorliegenden Arbeit die heteronuclearen Komplexe MnRe(CO)10 und MnCo(CO)9 mit Partnern des Typs R_nEX zur Reaktion gebracht. Da für die Spaltung der Mn-Re-Bindung Temperaturen >160°C erforderlich sind, konzentrieren sich die Untersuchungen auf die Reaktionen von MnCo(CO), die in vielen Fällen schon zwischen 0 und 25°C unter Spaltung der Mn-Co-Bindung ablaufen und zu Einkernkomplexen des Mangans sowie zu zwei- und mehrkernigen Cobaltverbindungen führen. Die milden Bedingungen ermöglichen dabei nicht nur den Nachweis der einkernigen Zwischenstufen, sondern in einigen Fällen sogar ihre Isolierung. Die thermisch durchgeführte Folgereaktion zu den Zweikernkomplexen zeigt eine deutliche Abhängigkeit vom Metallzentrum M und von den terminalen Liganden $R_n E$. Die Kondensationstendenz nimmt in der Reihe $(CO)_5MnAs(CF_3)_2 < (CO)_5MnSeCF_3 < (CO)_5MnP(CF_3)_2 < (CO)_5MnSCF_3 < (CO)_5MnSCF_3 < (CO)_5MnSCF_3 < (CO)_5MnSCF_3 > (C$ $(CO)_4CoAs(CF_3)_2 < ((CO)_4CoP(CF_3)_2) < ((CO)_4CoSeCF_3) < ((CO)_4CoSCF_3)$ zu. Während die vollständige Umwandlung des (CF₃)₂AsMn(CO)₅ bei 80–100°C mehrere Tage erfordert, verläuft die Kondensation der Kobaltverbindungen mit $(CF_3)_2P$ -, CF_3Se - und CF_3S -Liganden so rasch, dass sie nicht einmal spektroskopisch im Reaktionsgemisch nachzuweisen sind.

Führt man die Umsetzungen von MnCo(CO)₉ mit $(CF_3)_2EX$ bei Temperaturen zwischen 70 und 130°C durch, so laufen zwischen den einkernigen Mangan- und

TABELLE 2

den bei entsprechendem CO-Druck im Gleichgewicht vorliegenden einkernigen Kobaltverbindungen Folgereaktionen ab. Die Auswertung der Untersuchungen lässt sich in folgenden Aussagen zusammenfassen:

(a) Die bei der Spaltung von MnCo(CO), mit $E_2(CF_3)_{2n}$ (E = P, As; n = 2, E = S, Se; n = 1) schon bei niedriger Temperatur entstehenden Komplexe $(CF_3)_n EMn(CO)_5$ (A) und $(CF_3)_n ECo(CO)_4$ (B) können bei erhöhter Temperatur prinzipiell zu drei verschiedenen Kondensationsprodukten führen (Gl. 21-23):

$$A + B \rightarrow MnCo(CO)_7[E(CF_3)_n]_2 + 2CO$$
(21)

$$A + A \rightarrow Mn_2(CO)_8[E(CF_3)_n]_2 + 2 CO$$
(22)

$$\frac{x}{2} \mathbf{B} + \frac{x}{2} \mathbf{B} \to [\operatorname{Co}(\operatorname{CO})_3 \mathrm{E}(\operatorname{CF}_3)_n]_x + x \operatorname{CO}$$
(23)

Während für $P_2(CF_3)_4$ und $As_2(CF_3)_4$ die Bildung der heteronuclearen Verbindung MnCo(CO)₇[E(CF₃)₂]₂ bevorzugt ist, herrschen bei den Reaktionen mit $S_2(CF_3)_2$ und $Se_2(CF_3)_2$ die Kombinationen gemäss Gl. 22 und 23 vor. Offensichtlich liegt in den durch P bzw. As verbrückten Komplexen ein recht stabiles MnCoE₂-Ringsystem vor.

Für die Konstitution der Verbindungen $MnCo(CO)_7[E(CF_3)_2]_2$ lassen sich zwei extreme Möglichkeiten formulieren, die sich vornehmlich in der räumlichen Umgebung des Kobaltatoms unterscheiden (Fig. 3). Das Co-Zentrum kann entweder eine trigonal bipyramidale (I) oder eine quadratisch pyramidale Anordnung (II) der Liganden aufweisen. Dabei gibt es wegen der verschiedenen möglichen Positionen für die E-Brücken jeweils zwei Isomere: I,1 beide E-Atome in äquatorialer Position; I,2 ein E-Atom in axialer, das zweite in äquatorialer Position; II,1 beide E-Atome in der Basis; II,2 ein E-Atom in der Basis, das andere an der Spitze der quadratischen Pyramide. Da die Umwandlung der

Fig. 3. Konstitutionsmöglichkeiten für die Verbindungen MnCo(CO)7[E(CF3)2]2.

beiden Koordinationspolyeder ineinander nur eine sehr geringe Aktivierungsenergie erfordern sollte, ist prinzipiell auch eine zwischen den Extremen liegende verzerrte Geometrie als energetisch günstigste Anordung denkbar. Informationen über die Konstitution der Komplexe in Lösung liefert die Auswertung der IR-Spektren.

Die Schwingungsanalyse sagt für die heteronuclearen Zweikernsysteme $MnRe(CO)_8[As(CF_3)_2]_2$ bzw. $MnCo(CO)_7[E(CF_3)_2]_2$ acht bzw. sieben CO-Valenzbanden voraus. Dabei ist eine kleinere Bandenzahl im experimentellen Spektrum durch zufällige Entartung nicht auszuschliessen. Die Zuordnung der beobachteten Schwingungen gelingt durch Anwendung des Prinzips der lokalen Symmetrie, nach dem man bei vernachlässigbarer Kopplung zwischen den beiden Zentren das Spektrum als eine Superposition der Teilspektren von $(CO)_4MnE_2$ und $(CO)_4ReE_2$ bzw. $(CO)_4MnE_2$ und $(CO)_3CoE_2$ interpretieren kann. In Tab. 3 sind die experimentellen Daten den für die symmetrischen Komplexe $M_2(CO)_8$ - $[E(CF_3)_2]_2$ (M = Mn, Re) und $[Co(CO)_3P(CF_3)_2]_2$ gefundenen Werten gegenübergestellt. Die Übereinstimmung ist für die MnRe-Verbindung besser als für das MnCo-Derivat.

Stabile heteronucleare Komplexe mit zwei Schwefel- bzw. zwei Selenbrücken lassen sich bei den Umsetzungen von MnCo(CO)₉ mit S₂(CF₃)₂ bzw. Se₂(CF₃)₂ nicht nachweisen. Die terminalen Liganden CF₃S bzw. CF₃Se zeigen damit ein analoges Verhalten wie die Halogensubstituenten. Als Folgereaktion ist zunächst analog zur Polykondensation des (CF₃)₂AsCo(CO)₄, die Bildung von [Co(CO)₃-E'CF₃]_n (E' = S, Se) zu erwarten. Bei erhöhter Temperatur ist jedoch ein weiterer thermischer Abbau unter CO-Eliminierung wahrscheinlich.

(b) Bei den Umsetzungen von $MnCo(CO)_9$ mit Verbindungen des Typs $(CF_3)_2EX$ (E = P, As; X = I, H, SCF₃, SeCF₃) sind zwei Spaltungsrichtungen möglich (Gl. 24).

TABELLE 3

 $\label{eq:VERGLEICH DER IR- UND 19F-NMR-DATEN VON $$MnRe(CO)_8[As(CF_3)_2]_2$ BZW' $$MnCo(CO)_7[P(CF_3)_2]_2$ MIT $$Mn_2(CO)_8[As(CF_3)_2]_2$ UND $$Re_2(CO)_8[As(CF_3)_2]_2$ BZW. $$Mn_2(CO)_8[P(CF_3)_2]_2$ UND $$Co_2(CO)_6$-[P(CF_3)_2]_2$ DID $$Re_2(CO)_8[As(CF_3)_2]_2$ BZW. $$Mn_2(CO)_8[P(CF_3)_2]_2$ UND $$Re_2(CO)_6$-[P(CF_3)_2]_2$ DID $$Re_2(CO)_8[As(CF_3)_2]_2$ BZW. $$Mn_2(CO)_8[P(CF_3)_2]_2$ UND $$Re_2(CO)_6$-[P(CF_3)_2]_2$ DID $$Re_2(CO)_6$-[P(CF_3)_2$

Komplex	ν(CO) (cm ⁻¹)				$\Phi_{\mathbf{F}}$ (ppm)	
Mn ₂ (CO) ₈ [As(CF ₃) ₂] ₂	2086	2033		2028	2011	46.2	
Re2(CO)8[As(CF3)2]2	2109	2036		2036	2006	49.5	
Superposition bzw. Mittel	2109 2086	2035		2028	2011 2006	47.9	
$MnRe(CO)_8[As(CF_3)_2]_2$	2094		2034		$\begin{array}{c} 2015\\ 2009 \end{array}$	47.9	
Mn ₂ (CO) ₈ [P(CF ₃) ₂] ₂	2091	2040		2033	2018	51.2	
$Co_2(CO)_6[P(CF_3)_2]_2$	2115	2090		2060 2056	2015	58.2	
Superposition	2115	2060		2040	2018	<i></i>	
bzw. Mittel	2091	2056		2033	2015	54.7	
MnCo(CO) ₇ [P(CF ₃) ₂] ₂	2109 2091	2053		2042 2033	2027 2017	55.5	

UMSETZUNGEN	VON MnCo(CO)9	MIT R _n EX:]	EINGESETZTE N	AENGEN, BEDIN	GUNGEN UND PRODUKTE	
R _n EX	т (°С)	(4)	Lsgm, a	Ansatz (mmol)	Produkte	Identifizierung
P2(CF3)4	0	48	đ	2.0	(CF3)2PMn(CO)5, Co2(CO)6[P(CF3)2]2, Polymere	IR, NMR
$P_{2}(CF_{3})_{4}$	00	20	đ	2.0	MnCo(CO) ₇ [P(CF ₃) ₂] ₂	IR, NMR, MS
As2(CF3)4	020	96	đ	2.0	(CF ₃) ₂ AsMn(CO) ₅ , [Co(CO) ₃ As(CF ₃) ₂] _n , (CF ₃) ₂ AsCo(CO) ₄	IR, NMR, MS
As ₂ (CF ₃) ₄	100	96	8	2.0	MnCo(CO)7[As(CF ₃) ₂] ₂	IR, NMR, MS
S ₂ (CF ₃) ₂	20	36	đ	0.15	CF ₃ SMn(CO) ₅ , Mn ₂ (CO) ₈ (SCF ₃) ₂ , Polymere	IR, NMR, MS
S ₂ (CF ₃) ₂	06	15	e	0,15	Mn ₂ (CO)g(SCF ₃) ₂ , CF ₃ SMn(CO) ₅ , Polymere	IR, NMR
Se2(CF3)2	20	24	a	0.20	CF ₃ SeMn(CO) ₅ , Mn ₂ (CO) ₈ (SeCF ₃) ₂ , Polymere	IR, NMR
Se ₂ (CF ₃) ₂	110	61	c	0.20	Mn2(CO)8(SeCF3)2, CF3SeMn(CO)5, Polymere	IR, NMR
(CF ₃) ₂ PI	20	24	cı	0.10	Mn(CO)51, [Co(CO)3P(CF3)2]2, Polymere	IR, NMR, MS
$(CF_3)_2$ PI	110	72	đ	0.10	MnCo(CO)7[P(CF3)2]2, Mn(CO)5I	IR, NMR
(CF ₃)2AsI	0	24	a	0,10	Mn(CO)5I, (CF ₃)2AsCo(CO)4, [Co(CO)3As(CF ₃)2] _n	IR, NMR
(CF ₃) ₂ AsI	70	24	e	0.10	Mn ₂ (CO) _B As(CF ₃) ₂ I, Co ₄ (CO) ₁₂ , As ₂ (CF ₃) ₄	IR, NMR
(CF ₃)2AsI	130	72		0.10	Mn2(CO)8[As(CF3)2]2, Polymere	IR, NMR
(CF ₃) ₂ AsH	20	5	п	0.10	Keine Reaktion	
(CF ₃) ₂ AsH	80	0.2	5	0,10	(CF ₃) ₂ AsMn(CO) ₅ , (CF ₃) ₂ AsCo(CO) ₄ , [Co(CO) ₃ As(CF ₃) ₂] ₁	IR, NMR
(CF ₃)2AsH	100	06	n	010	MnCo(CO)7[As(CF3)2]2	IR, NMR, MS
(CF ₃) ₂ AsSCF ₃	20	Ð	q	0.10	Keine Reaktion	
(CF ₃) ₂ AsSCF ₃	110	24	ମ	0.10	(CF3)2AsMn(CO)5, Mn2(CO)8[As(CF3)2]2	IR, NMR, MS
					Mn2(CO)8As(CF3)2SCF3, Polymere	
(CF3)2AsSeCF3	20	30	ą	0.10	(CF ₃) ₂ AsMn(CO) ₅ , CF ₃ SeMn(CO) ₅ , (CF ₃) ₂ AsCo(CO) ₄	IR, NMR, MS
(CFa)aAsSrCFa	7.5	32	£	010	rolymere MnoteOloAsteFashSpeffaa MnoteOlotSpeffash	TR. NMR. MS
C	}	}	1	4	[Co(CO)3As(CF3)2],, Polymere	
(CF ₃) ₂ PSeCF ₃	20	48	q	0.10	CF ₃ SeMn(CO) ₅ , MnCo(CO) ₇ P(CF ₃) ₂ SeCF ₃ ,	IR, NMR
, ,					Mn ₂ (CO) ₈ (SeCF ₃) ₂ , [Co(CO) ₃ P(CF ₃) ₂] ₂	-
(CF ₃) ₂ PSeCF ₃	75	24	q	0.10	Mn2(CO)g(SeCF3)2, [Co(CO)3P(CF3)2]2	IR, NMR, MS
Me2AsI	20	72	ด	0,15	Mn(CO)5I, Mn(CO)4(I)AsMe2I, [Co(CO)3AsMe2] _n	IR, NMR
Me2PP(CF3)2	. 20	48	q	0.10	MnCo(CO)gPMe2P(CF3)2	IR, NMR, MS
				and the second sec		

ł

TABELLE 4

a a, Pentan; b, Benzol.

331

• -

a w reasons 1000

> ļ ł ,

> : i ľ ļ ļ I ţ ţ

$$\underset{_{3})_{2}\text{EX}}{\overset{(a)}{\longrightarrow}} (\text{CO})_{5}\text{MnE}(\text{CF}_{3})_{2} + \text{XCo}(\text{CO})_{4}$$
(24)

 $(CO)_{5}MnCo(CO)_{4} + (CF_{3})_{2}EX$

 $(CO)_5 MnX + (CF_3)_2 ECo(CO)_4$

Während für $(CF_3)_2$ PI, $(CF_3)_2$ AsI und Me₂AsI die Spaltung nach Gl. 24b deutlich bevorzugt ist, werden bei den Reaktionen mit $(CF_3)_2$ AsH, $(CF_3)_2$ AsSCF₃, $(CF_3)_2$ AsSeCF₃ und $(CF_3)_2$ PSeCF₃ durch die Produktverteilung beide Spaltungsrichtungen angezeigt. Nicht ganz auszuschliessen ist allerdings die alternative Möglichkeit des intramolekularen Ligandenaustausches gemäss Gl. 25, der nach dem Pearson'-schen Säure—Base-Konzept [15,16] zur Realisierung der günstigsten M—X- bzw. M'—E-Kombinationen führen sollte.

$$(CO)_{5}MnE(CF_{3})_{2} + XCo(CO)_{4} \rightleftharpoons Mn(CO)_{5}X + (CF_{3})_{2}ECo(CO)_{4}$$
(25)

Die bei höherer Temperatur ablaufenden Folgereaktionen zwischen den Produkten der Spaltung nach Gl. 24 werden im wesentlichen von zwei Effekten bestimmt:

1. Der Stabilität der Kobaltverbindungen XCo(CO)₄ bzw. (CF₃)₂ECo(CO)₄,

2. der Reaktivität der Manganverbindungen (CF₃)₂EMn(CO)₅ bzw. XMn(CO)₅ bezüglich der Zweikernbildung.

Entsprechend werden im Reaktionsgemisch immer dann MnCo-Zweikernkomplexe beobachtet, wenn das polymere $[Co(CO)_3E(CF_3)_n]_x$ unter CO-Druck partiell zur Rückbildung des Einkernkomplexes $(CF_3)_nECo(CO)_4$ führt. Geht die Kondensation wie für E = S bzw. Se über die Stufe $[Co(CO)_3E(CF_3)_n]_x$ hinaus, so werden nur die Zweikernkomplexe des Mangans $Mn_2(CO)_8[E(CF_3)_n]_2$ und $Mn_2(CO)_8E(CF_3)_nX$ nachgewiesen. Einzelheiten über die Reaktionsbedingungen und die Produkte sind Tab. 4 zu entnehmen.

Experimentelles

Alle Reaktionen wurden unter Ausschluss von Luft- und Feuchtigkeit mittels einer Standard-Vakuumapparatur durchgeführt. Zur Aufnahme der NMR-Spektren (¹⁹F) diente ein Varian-T 60 Spektrometer. Als Lösungsmittel wurde Pentan unter Zusatz von CCl₃F als innerem Standard verwendet. Die IR-Spektren wurden mit Gitterspektrometern der Firma Perkin—Elmer (Modelle 337 und 325) in KBr-Flüssigkeitszellen in Cyclohexan registriert. Zusammensetzung und Molekülgrösse neuer Verbindungen wurden analytisch und spektroskopisch gesichert. Die Massenspektren lieferte ein Spektrometer des Typs Varian MAT 311A in Kombination mit dem Datensystem SS 100; Elektronenstossionisation (Elektronenstrom 3 mA, Ionenbeschleunigungsspannung 8 kV, Elektronenbeschleunigungsspannung 70 V); Feldionisation (Ionierungsspannung 9 kV).

Die Ausgangsverbindungen MnRe(CO)₁₀ [20], MnCo(CO)₉ [21], Mn(CO)₅I [22], $E_2(CF_3)_4$ (E = P, As) [23], $S_2(CF_3)_2$ [24], $Se_2(CF_3)_2$ [25], $(CF_3)_2PPMe_2$ [26], $(CF_3)_2EE'CF_3$ (E = P, As; E' = S, Se) [27] und Me₂AsI [28] wurden nach Literaturvorschriften mit geringen Varianten synthetisiert.

Umsetzung von $MnRe(CO)_{10}$ mit $As_2(CF_3)_4$

Eine Duranampulle von 80 ml Inhalt wird nach Trocknung mit 260 mg

 $(0.5 \text{ mmol}) \text{MnRe}(\text{CO})_{10}$ beschickt und an der Vakuumapparatur unter Kühlung evakuiert. Anschliessend werden 440 mg (1.0 mmol) As₂(CF₃)₄ einkondensiert, die Ampulle wird abgeschmolzen. Zur Verfolgung des Reaktionsablaufs öffnet man das Gefäss, zieht die bei Raumtemperatur flüchtigen Anteile ab und untersucht den festen Rückstand durch Aufnahme eines IR-Spektrums. Zur Weiterreaktion überführt man das Reaktionsgemisch in eine neue Ampulle. Nach 4 Stunden bei 130°C ist noch keine Reaktion festzustellen. Temperaturerhöhung auf 160°C (5 h) führt zu teilweiser, auf 190°C (40 h) zu vollständiger Umsetzung des MnRe(CO)₁₀, Nach Abziehen des überschüssigen As₂(CF₃)₄ im Vakuum wird der feste Rückstand bei 60°C/10⁻³ Torr sublimiert. Am Kühlfinger scheidet sich ein Gemisch aus den Komplexen Mn₂(CO)₈[As(CF₃)₂]₂, Re₂(CO)₈[As(CF₃)₂]₂ und MnRe(CO)₈[As(CF₃)₂]₂ im Verhältnis 1/2/2 ab, wie sich aus der spektroskopischen Untersuchung ergibt. Ausbeute an MnRe(CO)₈-[As(CF₃)₂]₂ (im Gemisch): 30%.

Umsetzungen von MnCo(CO)₉

1. Mit $As_2(CF_3)_4$. Da in einer früheren Untersuchung festgestellt worden ist [7_j, dass die Druckverhältnisse die Reaktion entscheidend beeinflussen, wird die Umsetzung in einem geschlossenen Reaktionsgefäss (50 ml) mit mehreren Zerschlagventilen und seitlich angesetzter Fritte [2] durchgeführt. Dazu werden 732 mg (2.0 mmol) MnCo(CO), in die vorher unter Vakuum ausgeheizte und mit trockenem Stickstoff gefüllte Ampulle eingebracht. Nach Kühlung auf -196° C und Evakuieren werden As₂(CF₃)₄ in geringem Überschuss (2.05 mmol) und 20 ml Pentan als Lösungsmittel einkondensiert und die Ampulle unter Vakuum abgeschmolzen. In einem Wärmeschrank wird das Gefäss auf die Reaktionstemperatur von 100°C gebracht und von Zeit zu Zeit überprüft. Zunächst bildet sich unter Gasentwicklung ein rotbrauner Niederschlag. während sich die Lösung von orangerot nach gelb verfärbt. Im Verlauf von 4Tagen geht der grösste Teil des Feststoffes wieder in Lösung, und man erhält eine rotviolette Reaktionsmischung. Die CO-Bestimmung mittels einer Töplerpumpe ergibt 4.5 mmol CO, das aus dem Reaktionsgefäss abgepumpt wird. Nach erneutem Abschmelzen der Ampulle werden die löslichen Anteile durch Filtration in den Seitenarm überführt und der feste Rückstand mit zurückkondensiertem Lösungsmittel ausgewaschen. Das Lösungsmittel wird schliesslich in das Hauptgefäss zurückkondensiert und der Seitenarm mit den löslichen Produkten abgeschmolzen. Die Kristallmasse überführt man in ein Sublimationsgefäss und erhält durch Sublimation bei 35°C/10⁻³ Torr den heteronuclearen Zweikernkomplex MnCo(CO)₇[As(CF₃)₂]₂ in rotvioletten wachsartigen Kristallen. Ausbeute: 1030 mg (70% d. Th.), M 736 (M⁺). Gef.: C, 17.78; H, 0.15. $C_{11}H_0As_2CoF_{12}MnO_7$ ber.: C, 17.96; H, 0.0%.

2. Mit $P_2(CF_3)_4$. 732 mg (2.0 mmol) MnCo(CO)₉ werden in analoger Weise mit 2.2 mmol $P_2(CF_3)_4$ bei 90°C umgesetzt. Bereits nach 2 Stunden sind 50% der erwarteten CO-Menge von 4,0 mmol freigesetzt. Die nach 20 Stunden Reaktionsdauer gemessene CO-Menge beträgt 3.8 mmol. Der Zweikernkomplex MnCo(CO)₇[P(CF₃)₂]₂ fällt nach Sublimation bei 30°C/10⁻³ Torr in orangefarbenen Kristallen an. Der im Reaktionsgefäss verbleibende unlösliche Rückstand macht etwa 10% der eingesetzten Substanz aus. Ausbeute: 1.17 g (90% d. Th.), M 648 (M^+), Gef.: C, 20.23; H, 0.12. C₁₁H₀CoF₁₂MnO₇P ber.: C, 20.39; H, 0.0%. 3. Mit $S_2(CF_3)_2$. 55 mg (0.15 mmol) MnCo(CO)₉werden in einem abgeschmolzenen NMR-Rörchen mit 0.15 mmol $S_2(CF_3)_2$ in 1 ml absolutem Pentan zunächst bei Raumtemperatur zur Reaktion gebracht. Schon nach kurzer Zeit beginnt ein Feststoff auszufallen. Um zu verhindern, dass dieser die Messung beeinträchtigt, lässt man das Röhrchen mit der Spitze nach unten stehen und fixiert den Feststoff nach Abschluss der Reaktion durch Zentrifugieren in der Spitze. Die NMR-Messung weist die Bildung der Mangankomplexe CF₃SMn(CO)₅ und Mn₂(CO)₈(SCF₃)₂ im Verhältnis 1/10 nach. Der Kobaltanteil der Ausgangsverbindung findet sich vollständig im Feststoff. Auch 15-stündiges Erhitzen auf 90°C führt zu keiner durchgreifenden Änderung der Reaktionsmischung ausser einer CO-Eliminierung durch thermischen Zerfall des Feststoffes. Das Produkt Mn₂(CO)₈(SCF₃)₂ wird nach Abtrennung der Lösungsphase, Abkondensieren des Lösungsmittels und Fraktionierung durch Sublimation spektroskopisch (IR, NMR) eindeutig charakterisiert. Ausbeute an Mn₂(CO)₈(SCF₃)₂: 45%, bezogen auf MnCo(CO)₉.

4. Mit $Se_2(CF_3)_2$. Die analog zu 3. durchgeführte Umsetzung von 73 mg (0.2 mmol) MnCo(CO)₉ mit 0.2 mmol $Se_2(CF_3)_2$ liefert bei Raumtemperatur neben CF₃SeMn(CO)₅, Mn₂(CO)₈(SeCF₃)₂ und geringen Mengen weiterer CF₃Se-Verbindungen als löslichen Bestandteilen einen grauen Niederschlag, der die Kobalt-komponente der Ausgansverbindung enthält. Nach zweistündigem Erhitzen auf 110°C liegen nur noch drei lösliche Verbindungen vor, die beiden genannten Mangankomplexe und ein vermutlich Mangan- und Kobalt enthaltendes Zweikernsystem, das aber nur bei ausreichendem CO-Druck existiert. Die Aufarbeitung der Mischung ergibt nur die beiden Manganverbindungen in einer Gesamtausbeute von 20%.

5. Mit $(CF_3)_2 PI$. (a) 36.6 mg (0.1 mmol) MnCo(CO)₉ und 0.1 mmol $(CF_3)_2 PI$ werden, wie oben beschrieben, bei Raumtemperatur in einem NMR-Röhrchen zur Reaktion gebracht. Nach 24 Studen ergibt sich keine Änderung der Reaktionslösung mehr. Die CO-Bestimmung ergibt eine Menge von 0.1 mmol, entsprechend der Abspaltung einer CO-Gruppe. Der nach Abziehen des Lösungsmittels verbleibende kristalline Rückstand enthält Mn(CO)₅I und [Co(CO)₃P-(CF₃)₂]₂ im Molverhältnis 1/0.5.

(b) Die mit gleichen Mengen bei höherer Temperatur (90°C/24 h; 110°C/72 h) durchgeführte Umsetzung führt zu MnCo(CO)₇[P(CF₃)₂]₂ als Hauptprodukt. Die Reinigung gelingt durch fraktionierte Sublimation im Temperaturfälle. Ausbeute (bez. auf (CF₃)₂PI): 75%.

6. Mit $(CF_3)_2AsI$. 36.6 mg (0.1 mmol) MnCo(CO)₉ reagieren in Pentan schon bei 0°C mit 0.1 mmol $(CF_3)_2AsI$ unter quantitativer Bildung von Mn(CO)₅I und $[Co(CO)_3As(CF_3)_2]_n$. Im Gleichgewicht mit dem rotbraunen Feststoff liegen geringe Mengen $(CF_3)_2AsCo(CO)_4$ vor. Temperaturerhöhung auf 70–100°C liefert Mn₂(CO)₈As(CF₃)₂I, MnCo(CO)₇[As(CF₃)₂]₂, (CF₃)₂AsI und Co₄(CO)₁₂. Eine mit 366 mg (1 mmol) MnCo(CO)₉ ohne Lösungsmittel bei 70°C (20 h) in einer Duranampulle durchgeführte Umsetzung liefert nach Aufarbeitung der Reaktionsmischung durch fraktionierte Sublimation die Produkte Mn(CO)₅I, Mn₂(CO)₈As(CF₃)₂I und Co₄(CO)₁₂. Der Nachweis erfolgt durch Vergleich der IR- bzw. NMR-Spektren mit denen authentischer Proben. Als Sublimationsrückstand verbleiben ca. 40 mg (0.1 mmol) [Co(CO)₃As(CF₃)₂]_n.

Setzt man schliesslich MnCo(CO), mit $(CF_3)_2$ AsI bei Temperaturen >130°C

um, so wird nach Durchlaufen der genannten Verbindungen aus $MnCo(CO)_7$ -[As(CF₃)₂]₂ schliesslich als einzige flüchtige und lösliche Komponente Mn₂-(CO)₈[As(CF₃)₂]₂ erhalten. Der Co-Anteil der Ausgangsverbindung findet sich in Kombination mit (CF₃)₂As und I im unlöslichen Feststoff.

7. Auch die Umsetzungen von MnCo(CO), mit $(CF_3)_2AsH$, $(CF_3)_2AsSCF_3$, $(CF_3)_2AsSeCF_3$ und $(CF_3)_2PSeCF_3$ werden in Mengen von jeweils 0.1 mmol in NMR-Röhrchen durchgeführt. Die Identifizierung der Produkte gelingt durch Vergleich mit den Spektren bzw. Daten authentischer Proben sowie nach Beendigung der Reaktion und Abkondensieren des Lösungsmittels durch IR und massenspektrometrische Untersuchung der festen Reaktionsprodukte.

8. Mit Me_2AsI . 54.9 mg (0.15 mmol) MnCo(CO)₉ werden in einem abgeschmolzenen NMR-Röhrchen mit 0.15 mmol Me₂AsI in Benzol als Lösungsmittel umgesetzt. Produkte: Mn(CO)₅I, Mn(CO)₄(I)AsMe₂I und [Co(CO)₃AsMe₂]_n.

9. Mit $Me_2PP(CF_3)_2$. 36.6 mg (0.1 mmol) MnCo(CO)₉ und 0.1 mmol Me_2PP_2 (CF₃)₂ werden in Benzol als Lösungsmittel in einem abgeschmolzenen NMR-Röhrchen miteinander umgesetzt. Bei Raumtemperatur bildet sich durch Substitution von CO quantitativ MnCo(CO)₈PMe₂P(CF₃)₂.

Umsetzungen von $Mn(CO)_{5}I$ mit $[Co(CO)_{3}E(CF_{3})_{2}]_{n}$

1. Mit $[Co(CO)_3P(CF_3)_2]_2$. 62.4 mg (0.1 mmol) $[Co(CO)_3P(CF_3)_2]_2$ und 64.4 mg (0.2 mmol) Mn(CO)₅I werden in 1 ml absolutem Pentan in einem abgeschmolzenen NMR-Röhrchen zur Reaktion gebracht. Bei 90°C setzt die Spaltung der Co-Verbindung ein, erkennbar an der Bildung eines Niederschlages. Nach 24 Stunden wird die Reaktion abgebrochen, das Röhrchen geöffnet und das Lösungsmittel abkondensiert. Aus dem Rückstand werden durch Sublimation bei 30°C/10⁻³ Torr etwa 50% der Ausgangsverbindung und die Zweikernkomplexe MnCo(CO)₇[P(CF₃)₂]₂ und Mn₂(CO)₈P(CF₃)₂I gewonnen. Die Charakterisierung erfolgt durch ¹⁹F-NMR- und IR-Messungen.

2. Mit $[Co(CO)_3A_s(CF_3)_2]_n$. In eine dickwandige Duranampulle (25 ml) werden nach Evakuieren und Belüften mit trockenem Stickstoff 238 mg (0.67 mmcl) $[Co(CO)_3A_s(CF_3)_2]_n$ und 215 mg (0.67 mmol) Mn(CO)_5I eingebracht. Nach erneutem Evakuieren werden 10 ml Ether einkondensiert und die Ampulle abgeschmolzen. Die Reaktion wird nach 20 h bei 110°C abgebrochen und nach Öffnen der Ampulle ein Teil der Lösung zur Reaktionskontrolle in ein NMR-Röhrchen überführt. Als Produkte sind As₂(CF₃)₄, (CF₃)₂AsI und Mn₂(CO)₈As-(CF₃)₂I nachzuweisen. Aus dem Rest der Reaktionsmischung werden das Lösungsmittel und alle leicht flüchtigen Anteile abkondensiert. Neben wenig Mn(CO)₅I enthält der kristalline Rückstand praktisch ausschliesslich Mn₂(CO)₈-As(CF₃)₂I. Die Bildung von MnCo(CO)₇[As(CF₃)₂]₂ wird erst nach längeren Reaktionszeiten beobachtet.

Dank

Wir danken der Deutschen Forschungsgemeinschaft, dem Verband der Chemischen Industrie und der Dr. Otto Röhm-Gedächtnisstiftung für die finanzielle Unterstützung dieser Untersuchungen.

Literatur

- 1 J. Apel und J. Grobe, Z. Anorg. Allg. Chem., im Druck.
- 2 J. Grobe, Z. Anorg. Allg. Chem., 331 (1964) 63.
- 3 J. Grobe und W. Mohr, J. Fluorine Chem., 8 (1976) 145.
- 4 J. Grobe und R. Rau, J. Organometal. Chem., 157 (1978) 281.
- 5 J. Grobe und W. Mohr, J. Fluorine Chem., 8 (1976) 341.
- 6 J. Grobe und R. Rau, J. Fluorine Chem., 11 (1978) 265, 291.
- 7 G. Beysel, J. Grobe und W. Mohr, Z. Anorg. Allg. Chem., 418 (1975) 121.
- 8 F. Calderazzo, in V. Gutmann (Hrsg.), Halogen Chemistry Vol. 3, Academic Press, New York, 1967, S. 394.
- 9 J. Grobe und F. Kober, J. Organometal. Chem., 24 (1970) 191.
- 10 J.L. Davidson und D.W.A. Sharp, J. Chem. Soc. Dalton, (1973) 1957.
- 11 J. Grobe und H. Stierand, Z. Anorg. Allg. Chem., 371 (1969) 99.
- 12 H. Vahrenkamp, Persönliche Mitteilung.
- 13 J. Grobe und F. Kober, J. Organometal. Chem., 29 (1971) 295.
- 14 R.G. Hayter, J. Amer. Chem. Soc., 86 (1964) 823.
- 15 R.G. Pearson, J. Chem. Educ., 45 (1968) 581, 643.
- 16 H. Werner, Chemie in unserer Zeit, 1 (1967) 135.
- 17 J. Grobe und N. Sheppard, Z. Naturforsch. B, 23 (1968) 901.
- 18 J. Grobe und R. Rau, Z. Anorg. Allg. Chem., 414 (1975) 19.
- 19 N. Welcman und I. Rot, J. Chem. Soc., (1965) 7515.
- 20 G.O. Evans und R.K. Sheline, J. Inorg. Nucl. Chem., 30 (1968) 2862.
- 21 M. Sbrignadello, G. Bor und L. Maresca, J. Organometal. Chem., 46 (1972) 345.
- 22 E.O. Brimm, M.A. Lynch und W.J. Sesny, J. Amer. Chem. Soc., 76 (1954) 3831.
- 23 F.W. Bennett, H.J. Emeléus und R.N. Haszeldine, J. Chem. Soc., (1953) 1565; G.R.A. Brandt, H.J. Emeléus und R.N. Haszeldine, ibid., (1953) 1565.
- 24 C.W. Tullock und D.D. Coffman, J. Org. Chem., 25 (1960) 2016.
- 25 H.J. Emeléus und M.J. Dunn, J. Inorg. Nucl. Chem., 27 (1965) 752.
- 26 R.G. Cavell und R.C. Dobbie, J. Chem. Soc., (1968) 1409.
- 27 H.J. Emeléus, K.J. Packer und N. Welcman, J. Chem. Soc., (1962) 2529.
- 28 A. Tzschach und W. Lange, Z. Anorg. Allg. Chem., 326 (1964) 280.